98 research outputs found

    CNS distribution, signalling properties and central effects of G-protein coupled receptor 4

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordInformation on the distribution and biology of the G-protein coupled receptor 4 (GPR4) in the brain is limited. It is currently thought that GPR4 couples to Gs proteins and may mediate central respiratory sensitivity to CO2. Using a knock-in mouse model, abundant GPR4 expression was detected in the cerebrovascular endothelium and neurones of dorsal raphe, retro-trapezoidal nucleus locus coeruleus and lateral septum. A similar distribution was confirmed using RNAscope in situ hybridisation. In HEK293 cells, overexpressing GPR4, it was highly constitutively active at neutral pH with little further increase in cAMP towards acidic pH. The GPR4 antagonist NE 52-QQ57 effectively blocked GPR4-mediated cAMP accumulation (IC50 26.8 nM in HEK293 cells). In HUVEC which natively express GPR4, physiological acidification (pH 7.4-7.0) resulted in a cAMP increase by ∼55% which was completely prevented by 1 μM NE 52-QQ57. The main extracellular organic acid, l-lactic acid (LL; 1-10 mM), suppressed pH dependent activation of GPR4 in HEK293 and HUVEC cells, suggesting allosteric negative modulation. In unanaesthetised mice and rats, NE 52-QQ57 (20 mg kg-1) reduced ventilatory response to 5 and 10% CO2. In anaesthetised rats, systemic administration of NE 52-QQ57 (up to 20 mg kg-1) had no effect on hemodynamics, cerebral blood flow and blood oxygen level dependent responses. Central administration of NE 52-QQ57 (1 mM) in vagotomised anaesthetised rats did not affect CO2-induced respiratory responses. Our results indicate that GPR4 is expressed by multiple neuronal populations and endothelium and that its pH sensitivity is affected by level of expression and LL. NE 52-QQ57 blunts hypercapnic response to CO2 but this effect is absent under anaesthesia, possibly due to the inhibitory effect of LL on GPR4.Biotechnology and Biological Sciences Research Council (BBSRC)Medical Research Council (MRC)Wellcome Trus

    CNS distribution, signalling properties and central effects of G-protein coupled receptor 4

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordInformation on the distribution and biology of the G-protein coupled receptor 4 (GPR4) in the brain is limited. It is currently thought that GPR4 couples to Gs proteins and may mediate central respiratory sensitivity to CO2. Using a knock-in mouse model, abundant GPR4 expression was detected in the cerebrovascular endothelium and neurones of dorsal raphe, retro-trapezoidal nucleus locus coeruleus and lateral septum. A similar distribution was confirmed using RNAscope in situ hybridisation. In HEK293 cells, overexpressing GPR4, it was highly constitutively active at neutral pH with little further increase in cAMP towards acidic pH. The GPR4 antagonist NE 52-QQ57 effectively blocked GPR4-mediated cAMP accumulation (IC50 26.8 nM in HEK293 cells). In HUVEC which natively express GPR4, physiological acidification (pH 7.4-7.0) resulted in a cAMP increase by ∼55% which was completely prevented by 1 μM NE 52-QQ57. The main extracellular organic acid, l-lactic acid (LL; 1-10 mM), suppressed pH dependent activation of GPR4 in HEK293 and HUVEC cells, suggesting allosteric negative modulation. In unanaesthetised mice and rats, NE 52-QQ57 (20 mg kg-1) reduced ventilatory response to 5 and 10% CO2. In anaesthetised rats, systemic administration of NE 52-QQ57 (up to 20 mg kg-1) had no effect on hemodynamics, cerebral blood flow and blood oxygen level dependent responses. Central administration of NE 52-QQ57 (1 mM) in vagotomised anaesthetised rats did not affect CO2-induced respiratory responses. Our results indicate that GPR4 is expressed by multiple neuronal populations and endothelium and that its pH sensitivity is affected by level of expression and LL. NE 52-QQ57 blunts hypercapnic response to CO2 but this effect is absent under anaesthesia, possibly due to the inhibitory effect of LL on GPR4.Biotechnology and Biological Sciences Research Council (BBSRC)Medical Research Council (MRC)Wellcome Trus

    Genome sequences of three SARS-CoV-2 P.1 strains identified from patients returning from Brazil to Italy

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. We report the complete sequences of three SARS-CoV-2 P.1 strains obtained from nasopharyngeal swab specimens from three patients returning from Brazil to Italy

    The impact of generation Y’s customer experience on emotions: online banking sector

    Get PDF
    Recently, banking sector focused on attracting Generation Y (individuals born between 1980 and 2000) because they have emerged as a huge force with growing spending power which will unavoidably rival with Baby Boomers’ market dominance. They try to attract them through a unique customer experience, especially the ability of differentiation. Using the Mehrabian & Russell’s model of stimulus (S) - organism (O) - response (R), this study developed the Generation Y customer experience framework that intends to explain their consumer emotional responses toward customer experience attributes in a bank through three aspects: pleasure, dominance, and arousal toward online banks. Empirical evidence, based on data from a survey suggests that the overall customer experience attributes in the bank had a positive relation with emotional responses in different ways. “Value for money”, “Getting things right the first time” and “Put the consumer first” emerged as the most important attributes for Generation Y in experiencing a bank.info:eu-repo/semantics/acceptedVersio

    Carbon-cryogel hierarchical composites as effective and scalable filters for removal of trace organic pollutants from water

    Get PDF
    Effective technologies are required to remove organic micropollutants from large fluid volumes to overcome present and future challenges in water and effluent treatment. A novel hierarchical composite filter material for rapid and effective removal of polar organic contaminants from water was developed. The composite is fabricated from phenolic resin-derived carbon microbeads with controllable porous structure and specific surface area embedded in a monolithic, flow permeable, poly(vinyl alcohol) cryogel. The bead-embedded monolithic composite filter retains the bulk of the high adsorptive capacity of the carbon microbeads while improving pore diffusion rates of organic pollutants. Water spiked with organic contaminants, both at environmentally relevant concentrations and at high levels of contamination, was used to determine the purification limits of the filter. Flow through tests using water spiked with the pesticides atrazine (32 mg/L) and malathion (16 mg/L) indicated maximum adsorptive capacities of 641 and 591 mg pollutant/g carbon, respectively. Over 400 bed volumes of water contaminated with 32 mg atrazine/L, and over 27,400 bed volumes of water contaminated with 2 μg atrazine/L, were treated before pesticide guideline values of 0.1 μg/L were exceeded. High adsorptive capacity was maintained when using water with high total organic carbon (TOC) levels and high salinity. The toxicity of water filtrates was tested in vitro with human epithelial cells with no evidence of cytotoxicity after initial washing

    CNS distribution, signalling properties and central effects of G-protein coupled receptor 4

    Get PDF
    Information on the distribution and biology of the G-protein coupled receptor 4 (GPR4) in the brain is limited. It is currently thought that GPR4 couples to Gs proteins and may mediate central respiratory sensitivity to CO2. Using a knock-in mouse model, abundant GPR4 expression was detected in the cerebrovascular endothelium and neurones of dorsal raphe, retro-trapezoidal nucleus locus coeruleus and lateral septum. A similar distribution was confirmed using RNAscope in situ hybridisation. In HEK293 cells, overexpressing GPR4, it was highly constitutively active at neutral pH with little further increase in cAMP towards acidic pH. The GPR4 antagonist NE 52-QQ57 effectively blocked GPR4-mediated cAMP accumulation (IC50 26.8 nM in HEK293 cells). In HUVEC which natively express GPR4, physiological acidification (pH 7.4-7.0) resulted in a cAMP increase by ∼55% which was completely prevented by 1 μM NE 52-QQ57. The main extracellular organic acid, L-lactic acid (LL; 1-10 mM), suppressed pH dependent activation of GPR4 in HEK293 and HUVEC cells, suggesting allosteric negative modulation. In unanaesthetised mice and rats, NE 52-QQ57 (20 mg kg-1) reduced ventilatory response to 5 and 10% CO2. In anaesthetised rats, systemic administration of NE 52-QQ57 (up to 20 mg kg-1) had no effect on hemodynamics, cerebral blood flow and blood oxygen level dependent responses. Central administration of NE 52-QQ57 (1 mM) in vagotomised anaesthetised rats did not affect CO2-induced respiratory responses. Our results indicate that GPR4 is expressed by multiple neuronal populations and endothelium and that its pH sensitivity is affected by level of expression and LL. NE 52-QQ57 blunts hypercapnic response to CO2 but this effect is absent under anaesthesia, possibly due to the inhibitory effect of LL on GPR4

    Happy heart syndrome. role of positive emotional stress in takotsubo syndrome

    Get PDF
    AIMS: Takotsubo syndrome (TTS) is typically provoked by negative stressors such as grief, anger, or fear leading to the popular term 'broken heart syndrome'. However, the role of positive emotions triggering TTS remains unclear. The aim of the present study was to analyse the prevalence and characteristics of patients with TTS following pleasant events, which are distinct from the stressful or undesirable episodes commonly triggering TTS. METHODS AND RESULTS: Takotsubo syndrome patients with preceding pleasant events were compared to those with negative emotional triggers from the International Takotsubo Registry. Of 1750 TTS patients, we identified a total of 485 with a definite emotional trigger. Of these, 4.1% (n = 20) presented with pleasant preceding events and 95.9% (n = 465) with unequivocal negative emotional events associated with TTS. Interestingly, clinical presentation of patients with 'happy heart syndrome' was similar to those with the 'broken heart syndrome' including symptoms such as chest pain [89.5% (17/19) vs. 90.2% (412/457), P = 1.0]. Similarly, electrocardiographic parameters, laboratory findings, and 1-year outcome did not differ. However, in a post hoc analysis, a disproportionate higher prevalence of midventricular involvement was noted in 'happy hearts' compared with 'broken hearts' (35.0 vs. 16.3%, P = 0.030). CONCLUSION: Our data illustrate that TTS can be triggered by not only negative but also positive life events. While patient characteristics were similar between groups, the midventricular TTS type was more prevalent among the 'happy hearts' than among the 'broken hearts'. Presumably, despite their distinct nature, happy and sad life events may share similar final common emotional pathways, which can ultimately trigger TTS

    A novel clinical score (InterTAK Diagnostic Score) to differentiate takotsubo syndrome from acute coronary syndrome: results from the International Takotsubo Registry

    Get PDF
    AIMS. Clinical presentation of takotsubo syndrome (TTS) mimics acute coronary syndrome (ACS) and does not allow differentiation. We aimed to develop a clinical score to estimate the probability of TTS and to distinguish TTS from ACS in the acute stage. METHODS AND RESULTS: Patients with TTS were recruited from the International Takotsubo Registry ( www.takotsubo-registry.com) and ACS patients from the leading hospital in Zurich. A multiple logistic regression for the presence of TTS was performed in a derivation cohort (TTS, n = 218; ACS, n = 436). The best model was selected and formed a score (InterTAK Diagnostic Score) with seven variables, and each was assigned a score value: female sex 25, emotional trigger 24, physical trigger 13, absence of ST-segment depression (except in lead aVR) 12, psychiatric disorders 11, neurologic disorders 9, and QTc prolongation 6 points. The area under the curve (AUC) for the resulting score was 0.971 [95% confidence interval (CI) 0.96-0.98] and using a cut-off value of 40 score points, sensitivity was 89% and specificity 91%. When patients with a score of ≥50 were diagnosed as TTS, nearly 95% of TTS patients were correctly diagnosed. When patients with a score ≤31 were diagnosed as ACS, ∼95% of ACS patients were diagnosed correctly. The score was subsequently validated in an independent validation cohort (TTS, n = 173; ACS, n = 226), resulting in a score AUC of 0.901 (95% CI 0.87-0.93). CONCLUSION: The InterTAK Diagnostic Score estimates the probability of the presence of TTS and is able to distinguish TTS from ACS with a high sensitivity and specificity
    corecore